15-1. Moment of inertia of area(1〜12)

1 Cross-sectional areaA
b*h=
b=
h=
Moment of inertia of area I
b*h3/12 =
Moment of inertiaZ
I/e=b*h2/6 =
Moment of inertia of area k2
I/A=h2/12 =
(k=0.289*h)
2 Cross-sectional area A
b*h=
b=
h=
Moment of inertia of area I
b3*h3/(6*(b2+h2))
=
Moment of inertia Z=I/e
b2*h2/(6*(b2+h20.5)
=
Moment of inertia of area k2=I/A
b2*h2/(6*(b2+h2))
=
3 Cross-sectional area A
b*h/2 
=
b=
h=
Moment of inertia of area I
b*h3/36 
=
Moment of inertia Z=I/e
e1=2*h/3
= 
e2=h/3 
=
Z1=b*h2/24 
=
Z2=b*h2/12 
=
Moment of inertia of area k2=I/A
h2/18
=
(k=0.236*h)
4 Cross-sectional area A
3*30.5*b2/2 
=
b=
Moment of inertia of area I
5*30.5*b4/16 
=0.5413*b4
=
Moment of inertia Z=I/e
5*b3/8 
=0.625*b3
=
Moment of inertia of area k2=I/A
5*b2/24 
=
(k=0.456*b)
5 Cross-sectional area A
3*30.5*b2/2 
=
b=
Moment of inertia of area I
5*30.5*b4/16 
=0.5413*b4
=
Moment of inertia Z=I/e
5*30.5*b3/16 
=0.5413*b3
=
Moment of inertia of area k2=I/A
5*b2/24 
=
(k=0.456*b)
6 Cross-sectional area A
h*(b+b1/2 )
=
b=
b1=
h=
Moment of inertia of area I
(6*b2+6*b*b1+b12)*h3 /(36*(2*b+b1))
=
Moment of inertia Z=I/e
e1=(3*b+2*b1)*h/(3*(2*b+b1)) 
=

Z1=(6*b2+6*b*b1+b12)*h2/(12*(3*b+2*b1))
=
Moment of inertia of area k2=I/A
(6*b2+6*b*b1+b12)*h2 /(18*(2*b+b12)
=
7 Cross-sectional area A
2.8284*r2
=
r=
Moment of inertia of area I
(1+2*20.5)*r4/6 
=0.6381*r4
=
Moment of inertia Z=I/e
0.6906*r3
=
Moment of inertia of area k2=I/A
0.2256*r2
=
(k=0.475*r)
8      regular polygon
    n= Number of edges
    a= Side length
    r2= Radius of circumscribed circle
    r1= Radius of inscribed circle
     The axis shall pass through the center
Cross-sectional area A
n*a*r1/2 
=
n=
a=
r2 =
r1 =
Moment of inertia of area I
A*(6*r22-a2)/24 
=
Moment of inertia Z=I/e
I/[r2*cos(π/n)]≒A*r2/4
=
Moment of inertia of area k2=I/A
(6*r22-a2)/24 
=
9
d=2r
Cross-sectional area A
d2*π/4 =π*r2
=
d=
Moment of inertia of area I
d4*π/64 
=
Moment of inertia Z=I/e
d3*π/32 
=
Moment of inertia of area k2=I/A
d2/16 
=
(k=0.5*r)
10 Cross-sectional area A
(d22-d12)*π/4 
=
d1 =
d2 =
Moment of inertia of area I
(d24-d14)*π/64  =
Moment of inertia Z=I/e
[(d24 -d14)/d2]*π/32  =
Moment of inertia of area k2=I/A
(d22+d12)/16  =
11 Cross-sectional area A
d2*π/8 
(r2*π/2) =
r=
Moment of inertia of area I
(9*π2-64)*r4/(72*π)
=0.1098*r4
=
Moment of inertia Z=I/e
e=0.5756*r
=
Z=0.1908*r3
=
(On the other sideZ2 To)
Z2=0.2587*r3
=
Moment of inertia of area k2=I/A
(9*π2-64)*r2/(36*π2)
=0.0697*r2
=
(k=0.264*r)
12 Cross-sectional area A
π*a*b
=
a=
b=
Moment of inertia of area I
a3*b*π/4 
=
Moment of inertia Z=I/e
a2*b*π/4 
=
Moment of inertia of area k2=I/A
a2/4 
=
References: "Handbook of Mechanical Designs Must-Have for Engineers" (Revised Edition by Saburo Kano) Applied Structural Mechanics Beams and Columns Page 132 Refer to A, I, Z, k of various cross sections.。