15-4. Quadrature of plane figures

square


s=
d=
A=
A = area

A=s2=

A=d2/2=

s=0.7071d=

s=γA=

d=1.414s=

d=1.414γA=

Trapezoid


a=
b=
h=
A area

A=(a+b)*h/2
@=
Rectangle


a=
b=
d=
A=
A area

A=a*b=

A=a*(d2-a2)0.5=

A=b*(d2-b2)0.5=

d=(a2+b2)0.5

a=(d2-b2)0.5=

a=A€b=

b=(d2-a2)0.5=

b=A€a=
Parallelogram


a=
b=
c=
H=
h=
A area

A=[(H+h)*a+bh+cH]/2
@=

As shown by the dotted line, there are two triangles, and the area of ??each is calculated. The area of ??the non-parallelogram may be calculated from the sum.
parallelogram


A=
a=
b=
Aarea

A=a*b=

a=A€b=

b=A€a=

[ Semi-consideration]
a Dimensions measured at right angles to side b
Regular hexagon


s=
R=
r=
Aarea

R=Radius of circumscribed circle,@r= Radius of inscribed circle

A=2.598s2=

A=2.598R2=

A=3.464r2=

R=s=

R=1.155r=

r=0.866s=

r=0.866R=
Right triangle


a=
b=
c=
A area

A=bc/2=

a=(b2+c2)0.5=

b=(a2-c2)0.5=

c=(a2-b2)0.5=
Regular octagon


R=
r=
s=
A area

R= Radius of circumscribed circle,@r= Radius of inscribed circle

A=4.828s2=

A=2.828R2=

A=3.314r2=

R=1.307s=

R=1.082r=

r=1.207s=

r=0.924R=

s=0.765R=

s=0.828r=
Acute triangle


a=
b=
c=
h=
A area

A=bh/2=

A=b/2{a2-[(a2+b2-c2)/(2b)]2}0.5
@=

if@s=(a+b+c)/2@ If so

A=[s(s-a)(s-b)(s-c)]0.5
@=
regular polygon


n=
s=
R=
r=
Aarea, n= Number of sides

a=360‹€n

ƒΐ=180‹-a

A=nsr/2=

A=ns/2*(R2-s2/4)0.5
@=

R=(r2+s2/4)0.5=

r=(R2-s2/4)0.5=

s=2(R2-r2)0.5=
Obtuse triangle


a=
b=
c=
h=
Aarea

A=bh/2=

A=b/2*{a2-[(c2-a2-b2)/(2b)]2}0.5
@=

if@s=(a+b+c)/2@ If so

A=[s(s-a)(s-b)(s-c)]0.5
@=
circle


d=
r=
n=
Aarea, c= Circumference

A=ƒΞr2=3.1416r2=

A=0.7854d2=

c=2ƒΞr=6.2832r=

c=3.1416d=

r=c€6.2832=(A€3.1416)0.5=0.564γA
@=

d=c€3.1416=(A€0.7854)0.5
@=1.128γA
@=

Arc length for a central angle of 1 ‹=0.008727d=

The length of the arc with respect to the central angle n ‹ =0.008727nd=
circle dividing


r=
ƒΏ=
l=
A=
AareaCl= Arc lengthCƒΏ=angle

l=r*ƒΏ*3.1416/180=0.01745rƒΏ
=

l=2A/r=

A=rl/2=

A=0.008727ƒΏr2=

ƒΏ=57.296l/r=

r=2A/l=

r=57.296l/ƒΏ=
Hyperbola


x=
y=
a=
b=
A areaBCD

A=xy/2-ab/2*log(x/a+y/b)
@=
Missing circle


r=
h=
c=
ƒΏ=
l=
A areaCl= Arc lengthCƒΏ= angle

c=2[h(2r-h)]0.5=

A=[rl-c(r-h)]/2=

r=(c2+4h2)/(8h)=

l=0.01745ar=

h=r-(4r2-c2)0.5/2=

ƒΏ=57.296l/r=
parabola


x=
y=
l = Arc length
@=p/2{[2x/p(1+2x/p)]0.5+hyp.log[(2x/p)0.5+(1+2x/p)0.5]}

Approximate formula when x is smaller than y

l =y[1+2/3*(x/y)2-2/5*(x/y)4]
@=

or
l = (y2+4/3*x2)0.5
@=
Ring-shaped


R=
r=
D=
d=
A area

A=ƒΞ(R2-r2)=3.1416(R2-r2)
@=3.1416(R+r)(R-r)
@=

A=0.7854(D2-d2)
@=0.7854(D+d)(D-d)
@=
parabola


x=
y=
A area

A=2xy/3
@=

(That is, equal to 2/3 of the area of ??a rectangle with x as the base and y as the height)
Fan shape


R=
r=
D=
d=
ƒΏ=
AareaCƒΏ= angle

A=ƒΏƒΞ(R2-r2)/360
@=0.00873ƒΏ(R2-r2)
@=

A=ƒΏƒΞ(D2-d2)/(4*360)
@=0.00218ƒΏ(D2-d2)
@=
Parabolic intercept


BC=
FG=
A area

A=BFC
@= (Area of ??parallelogram BCDE)*2/3

If the height of the intercept measured at right angles to BC is FG

A=BFC=2/3*BC*FG
@=
Square edge


r=
c=
A area

A=r2-ƒΞr2/4=0.215r2
@=

A=0.1075c2
@=
cycloid


r=
d=
A area

l= Length of "Cycloid"

A=3ƒΞr2=9.4248r2= (Area of ??a circle)*3
@=

A=2.3562d2= (Area of ??a circle)*3
@=

l=8r=

l=4d=
ellipse


a=
b=
A areaCP= Around the ellipse

A=ƒΞab=3.1416ab=

Approximate formula for P

1. P=3.1416*[2*(a2+b2)]0.5
@@ =

2. P=3.1416*[2*(a2+b2)-(a-b)2/22]0.5
@@ =


References: "Standard Machine Design Chart Handbook Revised, Augmented 4th Edition" (co-authored by Fujio Oguri and Tatsuo Oguri) Numbers and Calculations of Numbers, page 1-1, refer to the quadrature of plane figures.